Expression of a Dominant Negative Mutant of Interleukin-1β Converting Enzyme in Transgenic Mice Prevents Neuronal Cell Death Induced by Trophic Factor Withdrawal and Ischemic Brain Injury
نویسندگان
چکیده
To explore the role of the interleukin (IL)-1 beta converting enzyme (ICE) in neuronal apoptosis, we designed a mutant ICE gene (C285G) that acts as a dominant negative ICE inhibitor. Microinjection of the mutant ICE gene into embryonal chicken dorsal root ganglial neurons inhibits trophic factor withdrawal-induced apoptosis. Transgenic mice expressing the fused mutant ICE-lacZ gene under the control of the neuron specific enolase promoter appeared neurologically normal. These mice are deficient in processing pro-IL-1 beta, indicating that mutant ICEC285G blocks ICE function. Dorsal root ganglial neurons isolated from transgenic mice were resistant to trophic factor withdrawal-induced apoptosis. In addition, the neurons isolated from newborn ICE knockout mice are similarly resistant to trophic factor withdrawal-induced apoptosis. After permanent focal ischemia by middle cerebral artery occlusion, the mutant ICEC285G transgenic mice show significantly reduced brain injury as well as less behavioral deficits when compared to the wild-type controls. Since ICE is the only enzyme with IL-1 beta convertase activity in mice, our data indicates that the mutant ICEC285G inhibits ICE, and hence mature IL-1 beta production, and through this mechanism, at least in part, inhibits apoptosis. Our data suggest that genetic manipulation using ICE family dominant negative inhibitors can ameliorate the extent of ischemia-induced brain injury and preserve neurological function.
منابع مشابه
Coenzyme Q10 Protects Hippocampal Neurons against Ischemia/ Reperfusion Injury via Modulation of BAX/Bcl-2 Expression
Introduction: Preliminary studies have con.rmed reduction in cell death following treatment with antioxidants. According to this .nding we study the relationship between consumption of CoQ10 and expression of Bax and Bcl2 in hippocampus following ischemia/reperfusion as proteins involved in cell programmed death or apoptosis. Methods: We studied the protective role of CoQ10 against ischemia-rep...
متن کاملLaminar Organization of Cerebral Cortex in Transforming Growth Factor Beta Mutant Mice
Transforming growth factor betas (TGF?s) are one of the most widespread and versatile cytokines. The three mammalian TGF? isoforms, ?1, ?2, and ?3, and their receptors regulate proliferation of neuronal precursors as well as survival and differentiation in neurons of developing and adult nervous system. Functions of TGF?s has a wide spectrum ranging from regulating cell proliferation and differ...
متن کاملFLIP(L) protects neurons against in vivo ischemia and in vitro glucose deprivation-induced cell death.
Knowledge of the molecular mechanisms that underlie neuron death after stroke is important to allow the development of effective neuroprotective strategies. In this study, we investigated the contribution of death receptor signaling pathways to neuronal death after ischemia using in vitro and in vivo models of ischemic injury and transgenic mice that are deficient in tumor necrosis factor recep...
متن کاملNeuroprotective Effect of Scutellarin on Ischemic Cerebral Injury by Down-Regulating the Expression of Angiotensin-Converting Enzyme and AT1 Receptor
BACKGROUND AND PURPOSE Previous studies have demonstrated that angiotensin-converting enzyme (ACE) is involved in brain ischemic injury. In the present study, we investigated whether Scutellarin (Scu) exerts neuroprotective effects by down-regulating the Expression of Angiotensin-Converting Enzyme and AT1 receptor in a rat model of permanent focal cerebral ischemia. METHODS Adult Sprague-Dawl...
متن کاملTiliacora triandra (Colebr.) Diels leaf extract enhances spatial learning and learning flexibility, and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion injury in mice
Objective: The present study investigated the effects of a local Thai vegetable, Tiliacora triandra (Colebr.) Diels, also known as Yanang, against cerebral ischemia/reperfusion injury in mice. Materials and Methods: Thirty male ICR mice were divided into three experimental groups of BLCCAO + 10% Tween 80, BLCCAO + T. triandra 300 mg/kg, and BLCCAO + T. triandra 600 mg/kg. Cerebral ischemia/repe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Experimental Medicine
دوره 185 شماره
صفحات -
تاریخ انتشار 1997